

Reference Number: 19TD001-13
12/17/2021

Codensity TM T408 & T432

Integration & Programming Guide

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 2 of 55

Table of Contents
1 Legal Notice .. 4
2 Codensity T408/T432 Video Transcoders ... 5
3 Introducing the Codensity T408/T432 Massif Video Transcoders .. 6
4 Intended Audience ... 7
5 Compatibility .. 8
6 Architecture Overview ... 9

6.1 Decoupled Decoding and Encoding .. 9
6.2 Protocol Stack ... 10
6.3 FFmpeg NETINT Command Options ... 11

6.3.1 Decoding .. 11
6.3.2 Encoding... 12

6.4 Decoding Parameters ... 13
6.5 Encoding Formats ... 14
6.6 Encoding Parameters .. 15
6.7 Custom GOP ... 25
6.8 Supported Versions of FFmpeg .. 28

7 Integration .. 29
7.1 Transcoding Using FFmpeg ... 29
7.2 Feature Support ... 30

7.2.1 HDR HLG/HDR/HDR10+/Dolby Vision .. 30
7.2.2 Region of Interest (ROI) .. 32
7.2.3 Closed Captions .. 32
7.2.4 Rate Control ... 32
7.2.5 User Data Unregistered SEI Passthrough ... 33
7.2.6 Forcing IDR frames ... 33
7.2.7 YUV Bypass ... 34

7.3 Integrating with libavcodec .. 36
7.4 Direct libxcoder API Integration ... 36

8 Libavcodec API ... 37
8.1 Introduction.. 37
8.2 Additional API Information ... 38

8.2.1 Decoding .. 39
8.2.2 Encoding... 40

9 Resource Management .. 43
9.1 Transcoding Resources ... 43
9.2 Device Load and Software Transcoding Instance ... 43
9.3 Resource Distribution Strategy ... 43
9.4 NETINT Command-Line Interface (CLI) ... 44

10 Resource Management API .. 45
10.1 Device Contexts .. 45

10.1.1 The Device Context Structure .. 45
10.1.2 Retrieve/Free Device Context .. 46

10.2 Device Information ... 47
10.2.1 The DeviceCapability Structure .. 47
10.2.2 Device capability output .. 48

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 3 of 55

10.2.3 List All Devices .. 49
10.2.4 List Information for Selected Devices... 49
10.2.5 Retrieve Detailed Information for a Particular Device ... 49
10.2.6 Update Device Information .. 50

10.3 Resource Allocation .. 50
10.3.1 User-Directed Resource Allocation .. 50
10.3.2 Auto Resource Allocation ... 51
10.3.3 Sample usage ... 51

11 Debugging .. 53
11.1 NETINT Codec Library Debug Log ... 53

12 List of Application Notes .. 54

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 4 of 55

1 Legal Notice

Information in this document is provided in connection with NETINT products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except
as provided in NETINT’s terms and conditions of sale for such products, NETINT assumes no liability
whatsoever and NETINT disclaims any express or implied warranty, relating to sale and/or use of NETINT
products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right.

A "Mission Critical Application" is any application in which failure of the NETINT Product could result,
directly or indirectly, in personal injury or death. Should you purchase or use NETINT’s products for any
such mission critical application, you shall indemnify and hold NETINT and its subsidiaries, subcontractors
and affiliates, and the directors, officers, and employees of each, harmless against all claims costs,
damages, and expenses and reasonable attorney’s fees arising out of, directly or indirectly, any claim of
product liability, personal injury, or death arising in any way out of such mission critical application,
whether or not NETINT or its subcontractor was negligent in the design, manufacture, or warning of the
NETINT product or any of its parts.

NETINT may make changes to specifications, technical documentation, and product descriptions at any
time, without notice. The information here is subject to change without notice. Do not finalize a design
with this information. The products described in this document may contain design defects or errors
known as errata which may cause the product to deviate from published specifications.

NETINT, Codensity, and NETINT Logo are trademarks of NETINT Technologies Inc. All other trademarks or
registered trademarks are the property of their respective owners.

© 2022 NETINT Technologies Inc. All rights reserved.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 5 of 55

2 Codensity T408/T432 Video Transcoders

NETINT provides high-density and efficient video transcoding solutions using the powerful video
processing engines inside our Codensity G4 Application-Specific Integrated Circuit (ASIC). NETINT
provides multiple stream transcoding functions and services directly to video content providers and
Transcoding as a Service (TaaS) providers for integration into their video streaming systems and services.
NETINT’s functions and services can be used for highly efficient Video-on-Demand file transcoding, as well
as real-time live video streaming applications.

This guide provides an overview of NETINT Codensity T408/T432 Massif video transcoding solution
parameters, and the ways they could be used when integrating and managing the T4XX transcoding
solutions into a customer's transcoding workflow.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 6 of 55

3 Introducing the Codensity T408/T432 Massif
Video Transcoders

Video content is the number one source of traffic on the Internet. Video is often generated using the
ubiquitous H.264 AVC video encoding standard. Newer H.265 HEVC video delivers equivalent quality with
up to a 50% reduction in file size and bandwidth requirements, making it the codec of choice for newer
video end points and devices. Codensity T408/T432 Massif Video Transcoders (also referred to as T4XX)
deliver scalable video transcoding between H.264 AVC and H.265 HEVC formats with up to 8K UHD video
resolution.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 7 of 55

4 Intended Audience

This document is intended for developers wishing to integrate NETINT transcoding capabilities into their
own media systems and customers directly using NETINT video utility programs and servers.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 8 of 55

5 Compatibility

Software Compatibility

This guide is intended to be used with NETINT T4XX Video Transcoder software Release
2.6.0

Hardware Compatibility

Release 2.6.0 supports NETINT T4XX Video Transcoder hardware.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 9 of 55

6 Architecture Overview

The Architecture Overview explains Decoupled Decoding/Encoding and the Protocol Stack.

6.1 Decoupled Decoding and Encoding

As illustrated in the image below, NETINT video decoding and encoding processes are decoupled from
each other. Decoding and encoding engines can be used independently for their respective tasks. This
makes it easier to integrate with existing decoding and encoding facilities, for example, a NETINT decoder
working with an existing software encoding process, or a NETINT encoder with an existing software
decoding process. Alternatively, both decoder and encoder can be placed in a pipeline to take full
advantage of the NETINT hardware accelerated transcoding.

Decoding and encoding

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 10 of 55

6.2 Protocol Stack

The following diagram depicts the software architecture of NETINT transcoding infrastructure.

Transcoding software architecture

In the architecture illustrated in the above diagram, the transcoder hardware is controlled by NETINT
XCoder firmware running on the hardware. In the user space, NETINT provides an API and library, the
libxcoder. It provides an interface to the firmware for starting and stopping encoding and decoding
instances, sending packets for decoding and retrieving the decoded results, and sending in raw YUV data
for encoding and retrieving the encoded result.

The libxcoder is a low-level API employed by a higher layer software, which are codec libraries in most of
the cases. Sitting above the libxcoder is usually the codec library that can be used by user applications for
transcoding. The libavcodec, a free and open-source library of codecs widely used for encoding and
decoding video and audio data, is such a library, and has been fully integrated with NETINT transcoding
capabilities.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 11 of 55

Third-party vendors using libavcodec as their built-in decoding and encoding engines can expect full
compatibility after NETINT transcoding is integrated. At application level, those applications using
libavcodec such as FFmpeg and NETINT’s media processor applications in the NETINT Media Server
framework also enjoy full functionality of NETINT transcoding capability

6.3 FFmpeg NETINT Command Options

6.3.1 Decoding

FFmpeg NETINT command options for decoding can be shown using the following command:

ffmpeg -help decoder=<ni_dec_name>

where <ni_dec_name> is h264_ni_dec or h265_ni_dec, name for NETINT AVC and HEVC decoder
respectively. Example:

$ ffmpeg -help decoder=h264_ni_dec

Decoder h264_ni_dec [H.264 NetInt decoder v250R1E08]:

 General capabilities: delay avoidprobe

 Threading capabilities: none

h264_ni_dec AVOptions:

 -xcoder <string> .D.V..... Select which XCoder card to

use. (default "bestload")

 bestload .D.V..... Pick the least loaded

XCoder/decoder available.

 bestinst .D.V..... Pick the XCoder/decoder

with the least number of running decoding instances.

 list .D.V..... List the available XCoder

cards.

 -dec <int> .D.V..... Select which decoder to use

by index. First is 0, second is 1, and so on. (from -1 to INT_MAX)

(default -1)

 -iosize <int> .D.V..... Specify a custom NVMe IO

transfer size (multiples of 4096 only). (from -1 to INT_MAX) (default -

1)

 -keep_alive_timeout <int> .D.V..... Specify a custom session

keep alive timeout in seconds. (from 1 to 100) (default 3)

 -user_data_sei_passthru <boolean> .D.V..... Enable user data

unregistered SEI passthrough. (default false)

 -custom_sei_passthru <int> .D.V..... Specify a custom SEI type

to passthrough. (from -1 to 254) (default -1)

 -low_delay <int> .D.V..... Specify a decode timeout

value (in milliseconds, recommended value is 600) to enable low delay

mode. Should be used only for streams that are in sequence. (from 0 to

10000) (default 0)

 -xcoder-params <string> E..V..... Set the XCoder

configuration using a :-separated list of key=value parameters

xcoder specifies which resource allocation strategy to be used to select a decoder for decoding. See
section 9.3 for details.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 12 of 55

dec assigns the decoding task to a specific decoder by its index.

iosize specifies a custom NVMe I/O transfer size.

keep_alive_timeout specifies a session keep alive timeout value. This is a periodical request/response
between libxcoder and XCoder firmware that when timed out, the decoding instance on decoder will be
terminated by XCoder firmware.

user_data_sei_passthru specifies to enable user data unregistered SEI passthrough. See App Note
APPS020 User data unregistered SEI passthrough for details.

custom_sei_passthru specifies a custom type of SEI to passthrough. See App Note APPS033 Custom SEI
passthrough for details.

low_delay enables decoder’s low delay mode for in sequence stream by specifying a timeout value. In low
delay mode, frames are sent for decoding one at a time and frame reordering is disabled in the decoder. If
a decoded frame is not returned to host within the timeout period, the decoder will send another frame.
This is done to in the case of bitstream corruption where a frame may be dropped during decoding. If a
bitstream with out of sequence frames is received, the frames will be decoded and returned in the order
they arrived and will not be reordered. This feature is intended only for low delay gops with in sequence
frames.

xcoder-params specifies encoding configuration using a :-separated list of key=value parameters. See
section 6.4 for details.

Decoding command example with keep_alive_timeout and low_delay enabled a dec index specified as 0:

ffmpeg -y -hide_banner -nostdin -vsync 0 -c:v h264_ni_dec -dec 0 -

keep_alive_timeout 10 -low_delay 600 -

i ../libxcoder/test/akiyo_352x288p25.264 -c:v rawvideo output_5.yuv

6.3.2 Encoding

FFmpeg NETINT command options for encoding can be shown using the following command:

ffmpeg -help encoder=<ni_enc_name>

where <ni_enc_name> is h264_ni_enc or h265_ni_enc, name for NETINT AVC and HEVC encoder
respectively. Example:

$ ffmpeg -help encoder=h265_ni_enc

Encoder h265_ni_enc [H.265 NetInt encoder v250R1E08]:

 General capabilities: delay

 Threading capabilities: none

h265_ni_enc AVOptions:

 -xcoder <string> E..V..... Select which XCoder card to

use. (default "bestload")

 bestload E..V..... Pick the least loaded

XCoder/encoder available.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 13 of 55

 bestinst E..V..... Pick the XCoder/encoder with the

least number of running encoding instances.

 list E..V..... List the available XCoder cards.

 -enc <int> E..V..... Select which encoder to use by

index. First is 0, second is 1, and so on. (from -1 to INT_MAX)

(default -1)

 -iosize <int> E..V..... Specify a custom NVMe IO

transfer size (multiples of 4096 only). (from -1 to INT_MAX) (default -

1)

 -keep_alive_timeout <int> E..V..... Specify a custom session

keep alive timeout in seconds. (from 1 to 100) (default 3)

 -xcoder-params <string> E..V..... Set the XCoder configuration

using a :-separated list of key=value parameters

 -xcoder-gop <string> E..V..... Set the XCoder custom gop

using a :-separated list of key=value parameters

xcoder specifies which resource allocation strategy to be used to select an encoder for encoding. See
section 9.3 for details.

enc assigns the encoding task to a specific encoder by its index.

iosize specifies a custom NVMe I/O transfer size.

keep_alive_timeout specifies a session keep alive timeout value. This is a periodical request/response
between libxcoder and XCoder firmware that when timed out, the encoding instance on encoder will be
terminated by XCoder firmware.

xcoder-params specifies encoding configuration using a :-separated list of key=value parameters. See
section 6.6 for details.

xcoder-gop specifies a custom GOP for encoding using a :-separated list of key=value parameters. See
section 6.6 for details.

Encoding command example:

ffmpeg -y -hide_banner -nostdin -f rawvideo -pix_fmt yuv420p -s:v

352x288 -r 25 -i ../libxcoder/test/akiyo_352x288p25.yuv -c:v

h264_ni_enc -keep_alive_timeout 10 output_ 7.h264

Finally, a transcoding command example:

ffmpeg -y -hide_banner -nostdin -vsync 0 -c:v h264_ni_dec -

keep_alive_timeout 10 -i ../libxcoder/test/1280x720p_Basketball.264 -

c:v h265_ni_enc -keep_alive_timeout 10 output_9.h265

6.4 Decoding Parameters

All values are integers.

savePkt

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 14 of 55

Sets the number of decoder input packets to save into a circular buffer. The range is from
0 to 1000. When value is >0, input packets are saved in the present working directory of
the process at path: “./nvmeA/streamBB/pkt-CCCC.bin”.

A Nvme device index for the T408/T432 card from system’s “/dev/nvmeA”

BB Two digits from 01 to 32, each representing a stream on the T408/T432 card.
Packets will be saved to a folder with the lowest index if it does not already
exist.

When exceeding 32, packets will be saved to the folder with the least recent
changes according to file timestamp. This will overwrite previous contents of
folder.

CCCC Each “pkt-CCCC.bin” represents one packet. CCCC represents index in circular
buffer.

In addition, in the stream folder, there will be a text file named “process_session_id.txt”
in which both the process ID and the session ID is written.

default 0

For example a command line to save the last 1000 packets input to the H.264 decoder while transcoding
to H.265 would look like this:

ffmpeg -c:v h264_ni_dec -xcoder-params savePkt=1000 -i test.264 -c:v

h265_ni_enc -xcoder-params "RcEnable=1:bitrate=5000000" output.265

6.5 Encoding Formats

The supported encoding formats of the decoder input and encoder output stream are shown below.

Coder T408/T432

Decoder Input H.264 Baseline, Constrained Baseline, Main, High, and High10 profiles up to level
6.2
H.265 Main and Main 10 profiles up to level 6.2.
Picture sizes from 32x32 to 8192x5120, bitrates from 64kbit/s to 700Mbit/s, SDR,
HDR HLG, HDR10, HDR10+, CEA708 Close Captions

Encoder Output H.264 Baseline, Extended, Main, High, and High10 profiles up to level 6.2
H.265 Main and Main10 profiles up to level 6.2.
Picture sizes from 32x32 to 8192x5120, bitrates from 64kbit/s to 700Mbit/s, SDR,
HDR HLG, HDR10, HDR10+, CEA708 Close Captions

Notes:

1. The T408/T432 supports progressive encoded video only. Interlaced video is not supported for
encoding or decoding.

2. The T408/T432 H.264 baseline encoder is also compliant with constrained baseline.
3. While picture sizes as small as 32x32 are supported for encoding, they are first padded to

256x128 which is the minimum size of the hardware encoder. Cropping is applied so that they are
decoded at 32x32. The decoder hardware can decode down to 32x32.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 15 of 55

4. 8192x5120 is supported for encode or decode only and not transcoding due to hardware
limitations. 8K (7680x4320) is fully supported for transcoding.

6.6 Encoding Parameters

All values are integers.

level

Sets the level for encoding. The level is a decimal value from 0 to 9.9 in 0.1 increments. If
level=0 the encoder will automatically determine the level based on picture size, frame
rate, and bitrate, otherwise the specified level be used. When a non-zero level is
specified the encoder will use it regardless of the encoder parameters. Valid H.264 levels
are: 1, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 3, 3.1, 3.2, 4, 4.1, 4.2, 5, 5.1, 5.2, 6, 6.1, and 6.2. Valid
H.265 levels are: 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, and 6.2. Note that we do not
support setting H.264 level 1b.
default 0

profile

Sets the profile for encoding. The valid profiles for H.264 and H.265 are shown below.
Any profile can be used for 8 bit encoding but only the 10 bit profiles (main10 for H.265
and high10 for h.264) may be used for 10 bit encoding.

H.265:
1=main (8 bit default)
2= main10 (10 bit default)

H.264:
1=baseline (not compatible with B frames)
2=main
3=extended
4=high (8 bit default)
5= high10 (10 bit default)

Note that for H.264 baseline, the gop must not contain B frames, so the only supported
values for gopPresetIdx=1, 2, 6, or 0 (custom gop with picType != 3)

losslessEnable

Enables lossless encoding mode for H.265. Lossless encoding bypasses the DCT and
quantization stages of the encoder. This results in perfect reconstruction on decode at
the cost of a much larger bitstream. Since quantization is bypassed, any feature that
relies on quantization is not supported such as rate control, crf, region of interest, hvsQP,
constant QP operation, etc. This feature is not supported for H.264. Supported values
are:
0: Disable
1: Enable
default 0

frameRate

The numerator of the frame rate. Works in conjunction with frameRateDenom to
support fractional framerates. The framerate is used by the encoder for rate control

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 16 of 55

(when enabled) and to set the VUI timing information. This parameter is intended for
integrating directly with libxcoder.
default FFmpeg value

frameRateDenom

The encoder frame rate denominator that supports fraction frame rate together with
frameRate. The frame rate would then be frameRate / frameRateDenom, e.g.
frameRate=30000 and frameRateDenom=1001 represents frame rate of
30000/1001=29.97. This parameter is intended for integrating directly with libxcoder.
default FFmpeg value

RcEnable

Enables or disables rate control. Rate control is disabled by default (fixed QP mode).
Supported values are:
0: Disable
1: Enable
default 0

bitrate

The encoding bitrate, in bits per second (bps). Used when RcEnable is enabled (set to 1);
ignored otherwise. The range is 64000 to 700000000. As an example, set
bitrate=3000000 for 3 Mbps.
default 200000

intraQP

Specifies the base value of the quantization parameter for I frames when rate control is
disabled (RcEnable=0). The range of supported values is 0 to 51. The QP values for P and
B frames are determined by the QP offset in the gop structure. See picQP in custom gop
structure (section Error! Reference source not found.). This section also lists the
definitions of all the gop presets.
default 22

RcInitDelay

Specifies the vbvBuffer size and initial buffer fill level in msec. The range of supported
values is 10 to 3000. Higher values lead to better visual quality and greater bitrate
variance. For example, a value of 3000 will set the rate control buffer model size to 3s *
bitrate (bits/s). A decoder will nominally require a buffer larger than 3 * bitrate to
accommodate the encoded stream. This allows rate control to target the average bitrate
over 3 seconds to track the target bitrate. Greater flexibility for rate control generally
improves image quality by allowing more bits for complex scenes whilst reducing bits for
simple scenes.
This value is used when RCEnable is 1.
default 3000

crf

Enable or disable Constant Rate Factor (CRF) rate control. This option encodes with
constant quality variable bitrate rate encoding. This option forces the following
parameters: RcEnable = 0, intraQP = <crf value>, hvsQPEnable = 1, hvsQPScale = 2,
maxDeltaQP = 51. The supported values are from 0-51 where lower is better quality.
default disabled (feature is disabled)

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 17 of 55

decodingRefreshType

Specifies the type of decoding refresh to apply at the intra frame period picture.
Supported values are as follows:
0 applies an I picture (not a clean random access point).
1 applies a non-IDR clean random access (CRA) point (H.265 only).
2 applies an IDR random access point.

default 2

intraPeriod

Key frame interval. Must be multiple of GOP size as defined by the gopPresetIdx. The
range is 0 to 1024. The I-frame type at the intraPeriod is determined by
decodingRefreshType. A value of 0 implies an infinite period.
default 92

flushGop

Enables or disables flushing the GOP at intraPeriod boundaries. This is useful for HLS
streaming when using out of sequence GOP patterns. With this parameter set, all frames
of the last GOP are flushed before the intraPeriod IDR is inserted. This guarantees that
each HLS segment will contain all the frames of that segment. Without this parameter
there will always be a few frames at the beginning of each segment belonging to the
previous segment. Note that this feature overrides the decodingRefreshType and always
uses IDR frames. Supported values are as follows:
0 disable
1 enable
default 0

gopPresetIdx

Defines the group of picture pattern. For custom GOP, and details of the gop presets
please see the Custom Gop Parameters Section Error! Reference source not found..
Supported values are as follows:
0 : Custom Gop
1 : I-I-I-I,..I (all intra, gop_size=1)
2 : I-P-P-P,… P (consecutive P, gop_size=1)
3 : I-B-B-B,…B (consecutive B, gop_size=1)
4 : I-B-P-B-P,… (gop_size=2)
5 : I-B-B-B-P,… (gop_size=4)
6 : I-P-P-P-P,… (consecutive P, gop_size=4)
7 : I-B-B-B-B,… (consecutive B, gop_size=4)
8 : I-B-B-B-B-B-B-B-B,… (random access, gop_size=8)
9 : I-P-P-P,… P (consecutive P, gop_size=1, similar to preset 2 but with single reference)
default 5

useLowDelayPocType

When enabled, the encoder will use picture_order_count_type=2 in the H.264 SPS
which lets decoders know that all frames are in sequence which typically results in lower
delay while decoding. This feature is supported only for H.264 when all frames are in
sequence, i.e, when using the low delay gop presets gopPresetIdx=1, 2, 3, 6, 7, and 9.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 18 of 55

By default this feature is disabled and the encoder uses picture_order_count_type=0
which is compatible with all gop presets.
0 disables low delay pocType
1 enables low delay pocType
default 0

enableAUD

Specifies whether or not to include access unit delimiters (AUD) in the encoded
bitstream. When enabled, access unit delimiters are placed at the boundaries between
frames. Some containers such as transport stream require AUDs in the bitstream. AUD is
supported for both H.264 and H.265.
0 disables AUD
1 enables AUD
default 0

hrdEnable

Specifies whether or not to include hypothetical reference decoder information (HRD) in
the encoded bitstream. When enabled, an HRD section is included in the VUI and two
SEI messages, buffering period and pic timing are inserted into the bitstream. Buffering
period SEIs are inserted on every IDR (whether forced or intra period generated) and pic
timing SEIs are inserted on every frame. The HRD information can be used to compute
the fullness of the coded picture buffer (CPB) of the hypothetical reference decoder on a
frame by frame basis. HRD is currently supported only for H.265 and FFmpeg 4.2.1 or
higher. HRD requires rate control to be enabled and so enabling HRD, causes rate control
to also be enabled, i.e, RcEnable=1.
0 disables HRD
1 enables HRD for H.265
default 0

dolbyVisionProfile

Specifies whether or not Dolby Vision compatibility is enabled for H.265 encoding and
for what profile. Currently only profile 5 (single base layer) is supported. Setting
dolbyVisionProfile=5 enables the profile 5 compatible VUI settings (video_format=5,
video_full_range_flag=1, colour_primaries=2, transfer_characteristics=2,
matrix_coeffs=2, and chroma_loc_info_present_flag=0) and also forces a number of
other parameters required for Dolby Vision compatibility (enableAUD=1, hrdEnable=1,
repeatHeaders=1, and decodingRefreshType=2). Dolby Vision compatibility is supported
only for H.265 and for FFmpeg 4.2.1 or higher. Dolby Vision compatibility also requires
the use of a GOP with all in-sequence frames such as gopPreset 2 or 7.
0 disables dolbyVision compatibility
5 enables dolbyVision profile 5 compatibility
default 0

cuLevelRCEnable (H.265 only)

Enable or disable coding unit level rate control. When enabled, the rate control can
reduce or increase the QP mid-frame if needed to maintain rate control. Supported
values are as follows:
0: disable
1: enable

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 19 of 55

default 1

mbLevelRcEnable (H.264 only)

Enable or disable macroblock level rate control. When enabled, the rate control can
reduce or increase the QP mid-frame if needed to maintain rate control. Supported
values are as follows:
0: disable
1: enable
default 1

hvsQPEnable

Enable or disable MB/CTU QP adjustment for subjective quality enhancement. This
parameter works with or without rate control enabled. Supported values are as follows:
0: disable
1: enable
default 0

hvsQpScale

QP scaling factor for CU QP adjustment. The range of supported values is 0 to 4.
default 2

maxDeltaQp

Max delta Qp for rate control. The range of supported values is 0 to 51. This
value is used when hvsQPEnable is 1
default 10

minQp

Min Qp for rate control. The range of supported values is 0 to 51.
default 8

maxQp

Max Qp for rate control. The range of supported values is 0 to 51.
default 51

confWinTop

Conformance top window size. This is the number of pixel rows at the top of the picture
that should not be displayed when decoding. The range of supported values is 0 to 8192.
default 0

confWinBot

Conformance bottom window size. This is the number of pixel rows at the bottom of the
picture that should not be displayed when decoding. The range of supported values is 0
to 8192.
default 0

confWinLeft

Conformance left window size. This is the number of pixel columns at the left side of the
picture that should not be displayed when decoding. The range of supported values is 0
to 8192.
default 0

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 20 of 55

confWinRight

Conformance left window size. This is the number of pixel columns at the right side of
the picture that should not be displayed when decoding. The range of supported values
is 0 to 8192.
default 0

roiEnable

Enables the Region of Interest (ROI) feature. See the section on ROI below for more
information. Supported values are as follows:
0: disable
1: enable
default 0

RoiDemoMode

Enables the ROI demo mode. When ROI is enabled (roiEnable=1), ROIDemoMode
permits the ROI feature to be demonstrated using the standard FFmpeg command line
without additional application development. ROI demo mode is currently supported
only on FFmpeg 3.4.2. Supported values are as follows:
0: disable
1: ROI is enabled on frame 90 with QP=10 for the center 1/3 (vertically) of the picture
and QP=40 everything else. ROI is disabled on frame 300. In this case the center 1/3 of
the picture with the lower QP will be encoded with much higher quality than the other
2/3.
2: The same as 1 except that the regions are swapped, i.e, the center 1/3 of the picture
has QP=40 and the rest is set to QP=10.

default 0

repeatHeaders

Specifies whether or not the encoder repeats the VPS/SPS/PPS headers on all I-frames.
For HDR/HDR10+ streams, the HDR SEIs (content light level info, mastering display color
volume, and alternative transfer characteristics) are also repeated. Repeated headers
permit a bitstream to be decoded mid-stream. Supported values are as follows:
0: disable
1: enable
default 1

 GenHdrs

Specifies whether or not the encoder generates headers in advance for user retrieval.
The headers are usually stored in FFmpeg AVCodecContext.extradata. User of encoder
can retrieve the headers after calling xcoder_encode_init which is the encoder’s init
callback function.
0: disable
1: enable
default 0

prefTRC

Specifies the preferred transfer characteristics value. Supported values are from 0 to
255. If this parameter is present, the encoder will include an alternative transfer

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 21 of 55

characteristics SEI in the bitstream with the preferred transfer characteristics field set to
the value of this parameter. If the parameter is not present the SEI will not be present.
The alternative transfer characteristics SEI is required by ETSI for HLG and specifies an
alternative transfer characteristics from that provided in the VUI.

lowDelay

Specifies whether or not to enable the low latency mode in encoding. When low latency
mode is enabled, gopPresetIdx must have a value of 1, 2, 3, 6, 7, 9 or 0 with consecutive
(in sequence) frames. For more detail see the application note APPS0012 Low latency
mode. Supported values are as follows:
0: disable
1: enable
default 0

transform8x8Enable (H.264 only)

Enables 8x8 intra prediction and 8x8 transform. Only compatible with H.264 high and
high10 profiles, disabled for other profiles.
0: disable
1: enable
default 1

sliceMode

Works in conjunction with parameter sliceArg
0: single slice per frame
1: multiple slices per frame
default 0

sliceArg

If sliceMode = 1, this represents the number of CTUs/MBs in each slice. Value must be
between 1 and the number of 64x64 CTUs (H.265) or 16x16 MBs (H.264) in the picture.

 default 0

entropyCodingMode (H.264 only)

Selects the entropy coding mode used in encoding process. Note that CABAC is only
compatible with H.264 Main, High, and High10 profiles and is disabled for other profiles.
0: CAVLC
1: CABAC
default 1

cbr

Enables or disables Constant Bitrate Rate (CBR) control. This option only takes effect
when rate control is enabled (RcEnable=1) and the rate control is unable to use all of the
configured bitrate. In this case the encoder pads the bitstream with filler NALs to
maintain the bitrate at the specified value. Note that this parameter cannot be enabled
if crf is specified. Supported values are as follows:
0: disable
1: enable
default 0

longTermReferenceEnable

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 22 of 55

Enables the long term reference (LTR) feature. With long term reference is enabled, an
application can set a couple of parameters on a frame by frame basis, to set a frame to
be used as a LTR (useCurSrcAsLongtermPic=1) and to set a frame to use a LTR reference
(useLongtermRef=1). Note that only 1 frame can be used as a LTR at a time and so
setting a new frame as LTR will clear any previous frames from being used as LTR. Also
note that the occurrence of an IDR frame will clear any previous LTR until a new LTR is
specified (referencing frames previous to an IDR is not allowed in the standards). One
further note is that the encoder supports only 2 reference frames one of which can be
LTR. When LTR is used it will replace reference L1 (see section Error! Reference source
not found..). LTR is only supported low delay gop structures (i.e. all frames in sequence)
such as gopPresetIdx=1, 2, 3, 6, 7, and 9 or for custom gop where all frames are in
sequence. Supported values are as follows:
0: disable
1: enable
default 0

The following example shows how the long term reference feature works. The
highlighted frame shows that a frame can be set to both use a long term reference and
be used as a long term reference.

More information on long term reference can be found in APP note APPS0028 Long Term
Reference Frame Application Note.

intraRefreshMode

Intra Refresh coding is an error resilience tool supported for H.264 and H.265 that
inserts intra-encoded MBs/CTUs in the encoded bitstream using several configurable
modes so that over time the entire image is refreshed without need of an I-frame. The
intra refresh interval is specified by another parameter intraRefreshArg. Note that only
frames that are used as reference are updated with this feature.
0 : No intra refresh
1 : Row – rows are refreshed from top to bottom
2 : Column – columns are refreshed from left to right
3 : Step size – MBs/CTUs are refreshed with a pattern determined by the encoder
4 : Adaptive intra refresh (AIR) – Adaptive intra refresh as defined in MPEG-4 Part 2
(ISO/IES 14496-2 Annex E). Note that AIR is supported for H.265 only with gopsize=1.
default 0 (intra refresh disabled)

 intraRefreshArg

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 23 of 55

Specifies the intra refresh interval. Depending on intraRefreshMode, it can mean one of
the following:
• intraRefreshMode=1: Number of consecutive MB/CTU rows refreshed per frame. Must
be less than or equal to the number of MB/CTU rows in the image.
• intraRefreshMode=2: Number of consecutive MB/CTU columns refreshed per frame
Must be less than or equal to the number of MB/CTU columns in the image.
• intraRefreshMode=3: Step size in MB/CTU for refresh each frame. Must be less than or
equal to the total number of MB/CTU in the image.
• intraRefreshMode=4: Number of MB/CTU for refresh each frame. Must be less than or
equal to the total number of MB/CTU in the image.
default 0 (intra refresh disabled)

intraRefreshMinPeriod

Specifies the minimum intra refresh period in frames. This parameter applies to
intraRefreshMode=1 through 3. When a non-zero value is specified, intra-refresh will
stop after completion of a refresh cycle until intraRefreshMinPeriod frames have
elapsed. If the intra refresh takes longer than intraRefreshMinPeriod, then this
parameter has no effect and refresh continues as before. Valid values are 0-8191 where
0 disables the feature.
default 0 (no minimum intra refresh period)

Intra Refresh Mode Examples

The 3 images below show the effect of the first 3 refresh modes for an H.265 image with
intraRefreshArg=2. The examples show 9 consecutive frames with intra-coded CTUs shaded in orange. The
first frame in the upper left corner is an I-frame and so all CTUs are intra encoded.

Example 1 - Row Mode: intraRefreshMode=1 and intraRefreshArg=2 and so two rows of CTUs are
refreshed (intra encoded) every frame.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 24 of 55

Example 1 – Row Mode

Example 2 - Column Mode: intraRefreshMode=2 and intraRefreshArg=2 and so two columns of CTUs are
refreshed (intra encoded) every frame.

Example 2 – Column Mode

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 25 of 55

Example 3 - Step Size Mode: intraRefreshMode=3 and intraRefreshArg=2 and so two CTUs are refreshed
(intra encoded) every frame using an encoder generated pattern.

Example 3 – Step Mode

6.7 Custom GOP

The GOP structure table defines a cyclic GOP structure that is used repeatedly throughout the sequence.
The frames are listed in encoding order, so Frame1 is the first frame in the encoding order, Frame2 is the
second, and so on. Among other things, this table specifies reference pictures used by the current picture.
Some specified reference frames for pictures encoded in the very first GOP after an IDR frame might not
be available. This is handled automatically by the encoder, so the reference pictures can be given in the
GOP structure table as if there were infinitely many identical GOPs before the current one.
“customGopSize” defines the number of frames in a GOP structure, the valid range is from 1 to 8.

Element Description
picType Picture type. Supported values are as follows:

0: I picture
1: P picture
2: B picture

pocOffset Display order of the frame within the GOP. The valid range is 1
to customGopSize.

picQp The offset of the initial frame QP from intraQP for P and B frames.
Not used for I frames which always use intraQP. When RcEnable=0
the initial frame QP is used directly, i.e, QP=intraQp+picQP. When
RcEnable=1, the initial QP is modified by the rate control. A
smaller picQP gives better quality to the frame, a large picQP gives

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 26 of 55

poorer quality. This valid range is (0-intraQp) to (51-intraQp). For
example, if intraQP=22 (default), the range of picQP is -22 to 29.

numRefPicL0 The number of reference L0 frames for P frames. Not used for
other frame types. Valid range is 1 to 2.

refPocL0 The POC of the reference picture L0. Used for P and B frames only.
Valid range is -16 to +16.

refPocL1 The POC of the reference picture L1 for B frames. The POC of the
second reference picture L0 for P frames. Used only for P and B
frames. refPocL1 can be the same as refPocL0 for B pictures, but
for compression efficiency it is recommended that they are
different . Valid range is -16 to +16.

temporalId Temporal layer of the frame. A frame cannot use a frame with a
higher temporalId as reference. Supported for H.265 only. Valid
range is 0 to 15.

gopPresetIdx=5 example

In this example, the first frame to process in the “Encode order” is the “P” frame. Then the “B” frame in

the middle which use both the I frame (1st_ref POC) and P frame (2nd_ref_POC), note as 0 and 4. The 3rd

processed frame is the “B” frame after I frame which use I frame (note as 0) and the second B frame (POC

2 in this GOP) as reference. The last processed frame is the 3rd B frame which use 2 and 4 as reference.
The parameters in FFmpeg command line is names with gn in the beginning of each parameter in the table

where n is from 0 to customGopSize-1.

This is a H264->H264 transcoding example for a custom gop equivalent to gopPresetIdx=8:

ffmpeg -c:v h264_ni_dec -i input.264 -c:v h264_ni_enc -xcoder-params

"gopPresetIdx=0:intraPeriod=128:RcEnable=1:bitrate=2000000" -xcoder-gop

"customGopSize=8:g0picType=2:g0pocOffset=8:g0picQp=1:g0numRefPicL0=1:g0

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 27 of 55

refPocL0=0:g0refPocL1=-

8:g0temporalId=0:g1picType=2:g1pocOffset=4:g1picQp=3:g1numRefPicL0=1:g1

refPocL0=0:g1refPocL1=8:g1temporalId=0:g2picType=2:g2pocOffset=2:g2picQ

p=5:g2numRefPicL0=1:g2refPocL0=0:g2refPocL1=4:g2temporalId=0:g3picType=

2:g3pocOffset=1:g3picQp=7:g3numRefPicL0=1:g3refPocL0=0:g3refPocL1=2:g3t

emporalId=0:g4picType=2:g4pocOffset=3:g4picQp=7:g4numRefPicL0=1:g4refPo

cL0=2:g4refPocL1=4:g4temporalId=0:g5picType=2:g5pocOffset=6:g5picQp=5:g

5numRefPicL0=1:g5refPocL0=4:g5refPocL1=8:g5temporalId=0:g6picType=2:g6p

ocOffset=5:g6picQp=7:g6numRefPicL0=1:g6refPocL0=4:g6refPocL1=6:g6tempor

alId=0:g7picType=2:g7pocOffset=7:g7picQp=7:g7numRefPicL0=1:g7refPocL0=6

:g7refPocL1=8:g7temporalId=0" -y output.264

The custom GOP structure definition should be put into a paragraph that starts with key word: “-xcoder-

gop”. It must include the parameter “customGopSize” and parameters for each frame. In this example,

customGopSize=8, so you have parameters from g0~g7.

This example uses the same setting as gopPresetIdx=8, so if you replace gopPresetIdx=0 to

gopPresetIdx=8, it will have the same encoding parameter. gopPresetIdx defines the 9 most commonly

used GOP structures. gopPresetIdx=0 allows user to use custom GOP structure.

Here is the predefined GOP structure for H.264 and H.265:

gopPresetIdx frame# picType pocOffset picQp numRefPicL0 refPocL0 refPocL1 temporalId

1 1 0 1 0 0 x x 0

2 1 1 1 1 2 0 -1 0

3 1 2 1 1 X 0 -1 0

4
1 1 2 1 2 0 -2 0

2 2 1 3 X 0 2 0

5

1 1 4 1 2 0 -4 0

2 2 2 3 X 0 4 0

3 2 1 5 X 0 2 0

4 2 3 5 X 2 4 0

6

1 1 1 5 2 0 -4 0

2 1 2 3 2 1 0 0

3 1 3 5 2 2 0 0

4 1 4 1 2 3 0 0

7

1 2 1 5 X 0 -4 0

2 2 2 3 X 1 0 0

3 2 3 5 X 2 0 0

4 2 4 1 X 3 0 0

8 1 2 8 1 X 0 -8 0

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 28 of 55

2 2 4 3 X 0 8 0

3 2 2 5 X 0 4 0

4 2 1 8 X 0 2 0

5 2 3 8 X 2 4 0

6 2 6 5 X 4 8 0

7 2 5 8 X 4 6 0

8 2 7 8 X 6 8 0

9 1 1 1 1 1 0 x 0

6.8 Supported Versions of FFmpeg

Currently supported versions of FFmpeg are 2.7.1, 3.4.2, 4.1.3, 4.2.1, 4.3, 4.3.1, 4.3.2 and 4.4. Both
Windows and Linux are supported, however only version 4.2.1 has been validated for Windows. Note that
not all Features are supported on all versions of FFmpeg. The reason for this is that some features require
support that is not available in older version of FFmpeg. When this is the case it will be clearly stated in
the feature description, otherwise the feature should be supported in all FFmpeg versions.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 29 of 55

7 Integration

7.1 Transcoding Using FFmpeg

The most straightforward way to transcode with NETINT transcoders is to use the NETINT transcoding
enabled application FFmpeg. FFmpeg is a vast suite of software libraries and programs for audio/video and
other multimedia file and stream handling.

By fully integrating NETINT transcoding into FFmpeg, users can take advantage of all of FFmpeg’s existing
functionalities like format transcoding, editing, video scaling, video post-production effects, and standards
compliance.

Running FFmpeg applications with NETINT transcoders is a simple matter of supplying command line
options to FFmpeg. The codec names of the NETINT decoder and encoder are h264_ni_dec, h265_ni_dec,
h264_ni_enc and h265_ni_enc respectively. The available command line options for the NETINT decoder
and encoder are listed below.

To transcode from H.264 to H.265 using the default setting, use the following command (CQP):

ffmpeg -hide_banner -r 25 -c:v h264_ni_dec -

i ../libxcoder/test/test_720p.264 -c:v h265_ni_enc output.265

To decode H.264 file to raw data (YUV format), use the following command:

ffmpeg -hide_banner -c:v h264_ni_dec -i test_720p.264 -c:v rawvideo

output.yuv

To encode raw data in YUV format to H.265, use the following command (CQP):

ffmpeg -hide_banner -f rawvideo -pix_fmt yuv420p -s:v 1920x1080 -i

input.yuv -c:v h265_ni_enc output.265

The command line can be used for passing encoding parameters to NETINT encoder, for example:

ffmpeg -c:v h264_ni_dec -i test.264 -c:v h265_ni_enc -xcoder-params

"gopPresetIdx=5:intraPeriod=92:RcEnable=1:RcInitDelay=3000:bitrate=5000

000" output.265

Here is an example of 10 bit encoding with a 10 bit YUV 420 little endian input (for big endian input use -
pix_fmt yuv420p10be):

ffmpeg -f rawvideo -pix_fmt yuv420p10le -s:v 2560x1600 -r 60 -i

2560x1600_60_10bit_le.yuv -c:v h265_ni_enc -xcoder-params

"gopPresetIdx=4:intraPeriod=128:RcEnable=1:RcInitDelay=3000:bitrate=100

00000:decodingRefreshType=1" 10bit2560x1600.265

Here is an example of 10 bit decoding with 10 bit YUV 420 little endian output (for big endian output
specify -pix_fmt yuv420p10be) :

ffmpeg -c:v h265_ni_dec -i 2560x1600_60_10bit.265

2560x1600_10bit_le.yuv

Here is an example of 10 bit transcoding:

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 30 of 55

ffmpeg -c:v h265_ni_dec -i input_10bit.265 -c:v h264_ni_enc -xcoder-

params

"gopPresetIdx=4:intraPeriod=128:RcEnable=1:RcInitDelay=3000:bitrate=100

00000:decodingRefreshType=1" output_10bit.264

NOTE: In the examples above, hardware decoder and/or encoder instances used in the transcoding have
been picked automatically by the NETINT video transcoding resource mechanism that works in the
background on the server. User intervention in the video resource management is minimum if you choose
to do so. Otherwise users may develop their own resource management schemes based on a NETINT API
provided for this purpose. See section 9 for details.

7.2 Feature Support

7.2.1 HDR HLG/HDR/HDR10+/Dolby Vision

The T408/T432 completely supports 3 HDR standards, HLG, HDR10 and HDR10+ for H.264 and H.265
encode and decode. These standards all use 10 bit color for greater dynamic range, a wider range of colors
as per ITU-R BT.2020. For Dolby Vision, the T408/T432 supports a compatibility mode such that the Dolby
Encoding Engine can use the T408/T432 for single base layer profile 5 Dolby Vision encoding with H.265.
This mode is enabled by setting the encoding parameter dolbyVisionProfile=5.

HDR10/10+ use a Perceptual Quantization curve as per SMPTE ST 2084 that supports a much larger range
of brightness but is not backwards compatible with standard dynamic range (SDR). The colors of
HDR10/10+ content played back on an SDR monitor appear very faded. HLG on the other hand uses the
ARIB STD-B67 transfer curve which provides greater dynamic range at high brightness and is backward
compatible with the SDR gamma curve at low brightness and so an HLG stream can be played on both SDR
and HDR monitors.

The 3 standards specify the color description in the VUI as follows:

Standard VUI Color Information

HLG
ATSC A/341

color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)
transfer_characteristics=18 (ARIB STD-B67 HLG Transfer Curve)
matrix_coeffs=9 (ITU-R BT.2020-2 Non-constant Luminance)

HLG
ETSI ETSI TS 101 154

color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)
transfer_characteristics=14 (ITU-R BT.2020-2 Functionally equivalent to BT.709)
matrix_coeffs=9 (ITU-R BT.2020 Non-constant Luminance)

HDR10/10+ color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)
transfer_characteristics=16 (SMPTE ST2084 PQ Transfer Curve)
matrix_coeffs=9 (ITU-R BT.2020-2 Non-constant Luminance)

HDR10 and HDR10+ also specifies static metadata containing the parameters of the mastering display
using two SEI payloads, content_light_level_info, and mastering_display_color_volume. HDR10+ also
adds dynamic metadata that can update the color information on a frame by frame basis. This metadata is
stored in T35 SEI payloads as per SMPTE 2094-40.

There are no special commands to enable HDR transcoding. The T408/T432 decoder will pass HDR color
information and SEIs up to FFmpeg if the bitstream contains it and the T408/T432 encoder will insert HDR

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 31 of 55

color information and SEIs in the bitstream if supplied by FFmpeg. Transcoding a compliant HDR10
bitstream will result in a compliant HDR10 bitstream. The same for HDR10+ and HLG.

For HDR encoding, FFmpeg supports specifying the color information on the command line with 3
parameters that map to the VUI color parameters as follows. These parameters may be specified in the
input or output sections of the FFmpeg command line. If the color information is specified on the
command line, the color information from the input AVFrames to the encoder will be used. These will be
properly set by the decoder if transcoding.

FFmpeg Color Parameter VUI Color Parameter

color_primaries color_primaries

color_trc transfer_characteristics

colorspace matrix_coeffs

The following is an example FFmpeg command line to encode a 10 bit HLG YUV file to H.265 as per ATSC
requirements:

ffmpeg -f rawvideo -pix_fmt yuv420p10le -s:v 3840x2160 -r 60 -

color_primaries 9 -color_trc 18 -colorspace 9 -i

Input_3840x2160_10bit_le.yuv -enc 0 -c:v h265_ni_enc -xcoder-params

"RcEnable=1:bitrate=20000000" outputATSCHlgT408.265

Note that while ETSI specifies transfer characteristics=14 for HLG in the VUI they also specify inclusion of
an alternative transfer characteristics SEI that specifies a preferred transfer characteristics of 18. The
NETINT decoder will return the preferred transfer characteristics instead of the VUI transfer characteristics
if this SEI is present. The NETINT Encoder has a parameter (prefTRC) to specify the inclusion of this SEI and
to set it’s value.

For example, the following command line to encode a 10 bit HLG YUV file to H.265 as per ETSI
requirements is as follows:

ffmpeg -f rawvideo -pix_fmt yuv420p10le -s:v 3840x2160 -r 60 -

color_primaries 9 -color_trc 14 -colorspace 9 -I

Input_3840x2160_10bit_le.yuv -enc 0 -c:v h265_ni_enc -xcoder-params

"RcEnable=1:bitrate=20000000:prefTRC=18" outputETSIHlgT408.265

Note that FFmpeg does not currently support specifying the static and dynamic metadata for HDR10/10+.
We will be supporting this through future libxcoder parameters.

An example of HDR transcoding between H.265 to H.264 is as follows. If the input is 10 bits, then the
output will be 10 bits. Any HDR VUI color information from the input bitstream will be transferred to the
output bitstream. Any static or dynamic HDR10/10+ metadata from the input bitstream will be transferred
to the output bitstream. When a ETSI HLG bitstream is decoded, the preferred transfer characteristics will
be used in the VUI of the output bitstream.

ffmpeg -dec 0 -c:v h265_ni_dec -i inputHDR.ts -c:a copy -enc 0 -c:v

h264_ni_enc -xcoder-params "RcEnable=1:bitrate=20000000" outputHDR.ts

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 32 of 55

If an ETSI compliant output bitstream is required then the VUI transfer characteristics can be overwritten
on the command line and the preferred transfer characteristics specified.

ffmpeg -dec 0 -c:v h265_ni_dec -i inputHDR.ts -c:a copy -enc 0 -

color_trc 14 -c:v h264_ni_enc -xcoder-params

"RcEnable=1:bitrate=20000000: prefTRC=18" outputHDR.ts

NOTE: HLG is supported in all supported versions of FFmpeg. HDR is supported in FFmpeg version 4.1.3 or
higher while HDR10+ and Dolby Vision compatibility are supported only in FFmpeg 4.2.1 or higher.

7.2.2 Region of Interest (ROI)

ROI is a feature of the encoder that permits the quality of some regions to be improved at the expense of
other regions. This is done by specifying an ROI map containing the QP for each 16x16 pixel block for
H.264, and 32x32 pixel block for H.265. A higher QP means lower quality, a lower QP means higher quality.
If rate control is disabled, the QPs are used directly for encoding, if rate control is enabled, the encoder
scales the QPs as necessary to meet the bitrate target. When ROI is enabled, the ROI map can be updated,
enabled, or disabled on a frame by frame basis.

As of version 4.2.1, FFmpeg supports an API for ROI that permits a number of rectangular ROI regions to
be specified. As of version 4.3.1, FFmpeg support an ROI filter (addroi) that permits a number of ROI
regions to be specified on the command line. The NETINT encoder supports this API. For more detail see
the application note APPS009 Region of Interest.

7.2.3 Closed Captions

The T408/T432 supports EIA CEA-708 closed captions for H.264 and H.265 encode and decode. There are
no special encoder parameters to set, the T408/T432 decoder automatically passes closed captions up to
FFmpeg if present in the bitstream and the T408/T432 encoder will automatically insert closed captions in
the encoded bitstream if they are present in the incoming stream to encoder. FFmpeg stores CE708 closed
captions as ATSC A53 Part 4 Closed Captions side data. Closed captions are stored in the encoded
bitstreams as T.35 SEI payloads formatted according to CEA-708.

7.2.4 Rate Control

There are 3 rate control modes supported by the NETINT encoder:

CQP: Constant QP mode, enabled by setting RCEnable=0, uses a fixed QP specified by “intraQP” for I-
frames plus an offset defined in the GOP structure for other frames. This mode is usually used for encoder
quality evaluation and is not recommended to achieve the best encoding efficiency. By default,
“RcEnable” parameter is 0 which means CQP mode.

CRF: Constant Rate Factor Mode, enabled by setting the rate factor parameter crf, is similar to constant QP
mode except that the QP is distributed within each frame to maximize quality through the use of the
hvsQp feature. This option encodes with constant quality using a variable bit rate.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 33 of 55

ABR: Average Bitrate Mode, enabled by setting RCEnable=1, varies the QP on a frame by frame basis to
maintain an average bitrate as set by the “bitrate” parameter. In this mode, the encoder buffers up an
amount of bitstream as specified by the RCInitDelay parameter to perform the rate control. This buffer is
typically known as a video buffering verifier or vbv buffer. The larger it is, the better for rate control, but
this comes with an increase in delay.

7.2.5 User Data Unregistered SEI Passthrough

The NETINT T4xxx supports passthrough of user data unregistered SEI payloads during transcoding. This
can be enabled by specifying the NETINT decoder codec parameter user_data_sei_passthru as per the
following example:

ffmpeg -c:v h264_ni_dec –user_data_sei_passthru 1 -i input.264 -c:v

h265_ni_enc output.265

This feature is intended for passing through smaller user data unregistered SEI messages up to 50 bytes in
size. User data may also be input to the NETINT encoder by a customer’s application. For more details see
the Application Note APPS0020 User data unregistered SEI passthrough.

7.2.6 Forcing IDR frames

The NETINT encoder supports forcing IDR frames at any point. Forcing an IDR is useful for a number of
reasons.

• When doing commercial substitution, an I-frame is required in the bitstream upon returning from
the commercial. This frame will likely not coincide with the intra period and so forced IDR frame
can be used.

• Another application is for HLS streaming. The NETINT encoder uses an open Gop structure which
means that frames from a previous gop can appear after the intra period generated I-frame. This
makes HLS segmentation difficult. This can be resolved by disabling intraPeriod I-frames
(intraPeriod=0) and using forced IDRs instead. When generating a forced IDR, the encoder flushes
out any remaining frames and starts a new gop so in effect it generates a closed gop. See
application note APPS0021 HTTP live streaming for more detail.

FFmpeg supports forcing IDRs using the -force_key_frames parameter. This parameter can accept list of
frame numbers or times for forcing. It also supports regular expressions in the form of -force_key_frames
‘expr:gte(t,n_forced*REFRESH_PERIOD)’ where REFRESH_PERIOD is the refresh period in seconds (ex.
1,2,etc). The NETINT encoder generates IDR frames in response to FFmpeg key frame requests. The period
can also be specified in frames using -force_key_frames ‘expr:gte(n,n_forced*REFRESH_FRAMES)’ where
REFRESH_FRAMES is the refresh period in frames.

NOTE: These forced IDR frames are in addition to the periodic I, CRA, or IDR frames generated using the
intraPeriod and decodingRefreshType parameters.

An example FFmpeg command line to encode a 1920x1080 YUV420 video to H.265 and force IDR pictures
every 2 seconds (-force_key_frames). The intraPeriod parameter is set to zero so that the only I frames are
the forced ones:

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 34 of 55

ffmpeg -f rawvideo -pix_fmt yuv420p -s:v 1920x1080 -r 30 -i input.yuv -

force_key_frames ‘expr:gte(t,n_forced*2)’ -c:v h265_ni_enc

-xcoder-params “intraPeriod=0:RcEnable=1:bitrate=7500000” output.265

The force_key_frames parameter can also be used while transcoding to force I-frames at the same
positions as in the source file as shown in the following example:

ffmpeg -c:v h264_ni_dec -i input.264 -force_key_frames source
-c:v h265_ni_enc -xcoder-params

“intraPeriod=0:RcEnable=1:bitrate=7500000” output.265

See the FFmpeg documentation for more information on -force-key_frames parameter. For more
information on frame forcing on the NETINT encoder see application note APPS006 Frame Type Forcing.

7.2.7 YUV Bypass

By default, decoded YUV data is transferred back to the host during transcoding and then back again to
the T4xx device for encoding. Decoded YUV frames are large and consume a lot of PCIe bandwidth and
they take some time to be transferred. YUV Bypass is an optimization to skip the YUV transfers altogether
and leave the decoded YUV frames on the device as a hardware frame for encoding. YUV bypass is
particularly useful if a decoded stream needs to be encoded multiple times, since the same hardware
frame can be used for each encode avoiding even more YUV transfers.

YUV bypass uses a concept in FFmpeg know as a hardware frame. A hardware frame is a YUV frame that
exists on an external device such as the T4xx. Hardware frames are specific to a particular device and can
only be used on that device unless transferred back to the host to become a normal software frame.

There are two ways to enable the YUV-bypass transcoding:

• xcoder-params “out=hw”

• -hwframes 1

Care must be taken if transcoding an input with sequence changes with hardware frames since by default,
FFmpeg will automatically perform scaling at a sequence change. Since scaling does not support hardware
frames, we must use the “-noautoscale” parameter to disable scaling at sequence changes.

The following are FFmpeg command line examples for using the YUV-bypass feature:

Regular path transcoding (no YUV Bypass):

ffmpeg -vsync 0 -c:v h265_ni_dec -i input.h265 -c:v h264_ni_enc -

xcoder-params "RcEnable=1:bitrate=7500000" output.h264 –y

YUV-bypass transcoding:

ffmpeg -vsync 0 -c:v h265_ni_dec -dec 0 -xcoder-params “out=hw” -

i input.h265 -c:v h264_ni_enc -enc 0 -xcoder-params

"RcEnable=1:bitrate=7500000" output.h264 -y

or

ffmpeg -vsync 0 -c:v h265_ni_dec -dec 0 -hwframes 1 -i input.h265 -

c:v h264_ni_enc -enc 0 -xcoder-params "RcEnable=1:bitrate=7500000"

output.h264 -y

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 35 of 55

Regular path transcoding (YUV Bypass explicitly disabled):
ffmpeg -vsync 0 -c:v h265_ni_dec -dec 0 -xcoder-params “out=sw” -

i input.h265 -c:v h264_ni_enc -enc 0 -xcoder-params

"RcEnable=1:bitrate=7500000" output.h264 -y

or

ffmpeg -vsync 0 -c:v h265_ni_dec -dec 0 -hwframes 0 -i input.h265 -

c:v h264_ni_enc -enc 0 -xcoder-params "RcEnable=1:bitrate=7500000"

output.h264 -y

YUV-bypass transcoding with Sequence Change:

sudo ffmpeg -vsync 0 -c:v h265_ni_dec -dec 0 -xcoder-params “out=hw” -

i input.h265 -noautoscale -c:v h264_ni_enc -enc 0 -xcoder-params

"RcEnable=1:bitrate=7500000" output.h264 -y

A hwupload filter can be used to upload a software frame to the device to create a hardware frame for
encoding. This can be especially useful if the software frame needs to be encoded multiple times since it
only needs to be transferred to the device once. In the following example, “device_name” is an arbitrary
name, and needs to match with filter_hw_device. In the example Uploader Device ID (ni=device_name:0)
needs to be matched with the encoder ID (-enc 0).

Single Upload Example:
sudo ffmpeg -init_hw_device ni=device_name:0 -pix_fmt yuv420p -

s:v 1920x1080 -r 30 -i input.yuv -filter_hw_device device_name -

vf 'format=yuv420p,hwupload' -c:v h265_ni_enc -enc 0 -xcoder-params

" RcEnable=1:bitrate=7500000" output.265 -y

A hardware frame can be used in an encoding ladder where the same frame needs to be encoded multiple
times with different encoding parameters.

Upload Example with Spilt Filter:
sudo ffmpeg -init_hw_device ni= device_name:0 -pix_fmt yuv420p -

s:v 1920x1080 -r 30 -i input.yuv -filter_hw_device device_name -

filter_complex 'format=yuv420p,hwupload,split=2[out1][out2]' -map

'[out1]' -c:v h265_ni_enc -enc 0 -xcoder-params

" RcEnable=1: bitrate=3000000" dinner_upload_split_low.265 -y -map

'[out2]' -c:v h265_ni_enc -enc 0 -xcoder-params

"RcEnable=1:bitrate=6000000" dinner_upload_split_high.265 -y

Upload Example with Scale Filter:
sudo ffmpeg -init_hw_device ni= device_name:0 -pix_fmt yuv420p -

s:v 1920x1080 -r 60 -i input.yuv -filter_hw_device device_name -

vf scale=1280:720,format=yuv420p,hwupload -c:v h265_ni_enc -xcoder-

params 'RcEnable=1:bitrate=2000000' output.h265

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 36 of 55

A hardware frame can also be downloaded from the device to the host using a hwdownload filter to create
a software frame that can then be used for filtering for example. An example where this is useful is when
transcoding to an encoding ladder where some encoders require scaling. The decoded hardware frame can
be used directly for the encoders that do not require scaling and downloaded to the host for scaling for the
encoders that do require scaling. Another example is if a hardware frame is needed on another device for
encoding. In this case, the hardware frame can be downloaded from the first device and then uploaded to
the second device.

Download YUV Example:
ffmpeg -vsync 0 -c:v h264_ni_dec -xcoder-params 'out=hw' -dec 0 -

i input.264 -vf hwdownload,format=yuv420p -c:v rawvideo output.yuv -y

Download with Crop Filter in Transcoder:
ffmpeg -y -hide_banner -nostdin -vsync 0 -xcoder-params 'out=hw' -dec

0 -c:v h264_ni_dec -i input.264 -

vf hwdownload,format=yuv420p,crop=640:360 -c:v h265_ni_enc -enc

0 output.h265

7.3 Integrating with libavcodec

If users don’t have access to a command line to run FFmpeg as an executable, or if they want to use just a
small part of FFmpeg inside their own program for transcoding using NETINT T408/T432, they can choose
to integrate with FFmpeg’s libavcodec library, which provides a decoding and encoding API, and all the
supported codecs, among them the NETINT T408/T432 decoder and encoder. For details of libavcodec API
and its usage example with T408/T432, refer to section 8 libavcodec API.

7.4 Direct libxcoder API Integration

User applications can also be integrated directly with the libxcoder API but this is much more complicated
and you lose the rich video functionality provided by FFmpeg.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 37 of 55

8 Libavcodec API

8.1 Introduction

FFmpeg is built on top of a few libraries: libavformat, libavcodec,libavdevice,libavutil,libswscale and
libavfilter. For basic transcoding operation, we just need libavformat and libavcodec. If need to apply
effects, we may have to add libavfilter.

NETINT follows the standard encoder/decoder interface and integrated T408/T432 with libavcodec
through libxcoder library. For general user, using FFmpeg command line is the easiest way. Advanced users
who want to use libavcodec directly can refer to libavcodec API described in this section. The API for
libavcodec is not specific to NETINT T408/T432 but a general interface for any of codecs within libavcodec.

Figure 1 - Libavcodec API

In Figure 1 the input file goes to libavformat and is demuxed to elementary video packets. Coded video
packets will be sent to libavcodec for decoding.

Once the packet is decoded, user needs to receive the decoded frame from libavcodec.

For encoding, the raw data frame will be sent to libavcodec and then user needs to receive the coded
packet from libavcodec.

The following table lists the libavcodec API functions.

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 38 of 55

Decoding : Description

avcodec_find_decoder_by_name find the decoder, for T408/T432, that’s h264_ni_dec or
h265_ni_dec

avcodec_send_packet send a coded packet to libavcodec

avcodec_receive_frame read back a decoded frame from libavcodec

Encoding :

avcodec_find_encoder_by_name find the encoder, for T408/T432, that’s h264_ni_enc or
h265_ni_enc

avcodec_send_frame send a raw data frame to libavcodec

avcodec_receive_packet read an encoded packet from libavcodec

From FFmpeg 3.x, avcodec_decode_video2 is not recommended any more, avcodec_send_packet and
avcodec_receive_frame is used for decoding. The reason to separate sending packet and receiving frame is
to give libavcodec freedom on handling decoding. It can determine when the output is ready, and the
write/read operation is completely separated.

NETINT provides decoding and encoding examples in tools/apiexample folder.

For decoding example, please refer to ni_demuxing_decoding.c

For encoding example, please refer to ni_encode_video.c

The decoding and encoding call flows are very similar. Users send data to libavcodec, then check the
return. If there is no error (return code >= 0), then try to read data back from libavcodec.

There are 4 different cases:

• AVERROR(EAGAIN): need more input data to generate output

• AVERROR_EOF: no more data to output, the coding is finished.

• <0, error happened

• Other: OK, the data is here!

8.2 Additional API Information

For detailed API function description, please refer to FFmpeg website:

https://FFmpeg.org/documentation.html

Go to API Documentation section, choose the right FFmpeg version. Here we use FFmpeg v4.1 as
reference.

https://ffmpeg.org/documentation.html

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 39 of 55

8.2.1 Decoding

AVCodec* avcodec_find_decoder_by_name (const char * name)

Find a registered decoder with the specified name.

Parameters

name name of the requested decoder

Returns

A decoder if one was found, NULL otherwise.

int avcodec_send_packet (AVCodecContext * avctx,

 const AVPacket * avpkt

)

Supply raw packet data as input to a decoder.

Internally, this call will copy relevant AVCodecContext fields, which can influence decoding per-packet,

and apply them when the packet is actually decoded. (For example AVCodecContext.skip_frame, which

might direct the decoder to drop the frame contained by the packet sent with this function.)

Warning: The input buffer, avpkt->data must be AV_INPUT_BUFFER_PADDING_SIZE larger than the actual

read bytes because some optimized bitstream readers read 32 or 64 bits at once and could read over the

end.

Do not mix this API with the legacy API (like avcodec_decode_video2()) on the same AVCodecContext. It

will return unexpected results now or in future libavcodec versions.

Note: The AVCodecContext MUST have been opened with avcodec_open2() before packets may be fed

to the decoder.

Parameters

avctx codec context

[in] avpkt The input AVPacket. Usually, this will be a single video frame, or several complete

audio frames. Ownership of the packet remains with the caller, and the decoder will

not write to the packet. The decoder may create a reference to the packet data (or

copy it if the packet is not reference-counted). Unlike with older APIs, the packet is

always fully consumed, and if it contains multiple frames (e.g. some audio codecs),

will require you to call avcodec_receive_frame() multiple times afterwards before

you can send a new packet. It can be NULL (or an AVPacket with data set to NULL and

https://ffmpeg.org/doxygen/4.1/structAVCodec.html
https://ffmpeg.org/doxygen/4.1/ffmpeg__filter_8c.html#a61569f2965b7a369eb10b6d75d410d11
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/structAVPacket.html
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html#af869b808363998c80adf7df6a944a5a6
https://ffmpeg.org/doxygen/4.1/group__lavc__decoding.html#ga3ac51525b7ad8bca4ced9f3446e96532
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/group__lavc__core.html#ga11f785a188d7d9df71621001465b0f1d
https://ffmpeg.org/doxygen/4.1/structAVPacket.html
https://ffmpeg.org/doxygen/4.1/group__lavc__decoding.html#ga11e6542c4e66d3028668788a1a74217c
https://ffmpeg.org/doxygen/4.1/structAVPacket.html

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 40 of 55

size set to 0); in this case, it is considered a flush packet, which signals the end of the

stream. Sending the first flush packet will return success. Subsequent ones are

unnecessary and will return AVERROR_EOF. If the decoder still has frames buffered, it

will return them after sending a flush packet.

Returns

0 on success, otherwise negative error code: AVERROR(EAGAIN): input is not accepted in the

current state - user must read output with avcodec_receive_frame() (once all output is read, the

packet should be resent, and the call will not fail with EAGAIN). AVERROR_EOF: the decoder has

been flushed, and no new packets can be sent to it (also returned if more than 1 flush packet is

sent) AVERROR(EINVAL): codec not opened, it is an encoder, or requires

flush AVERROR(ENOMEM): failed to add packet to internal queue, or similar other errors:

legitimate decoding errors

int avcodec_receive_frame (AVCodecContext * avctx,

 AVFrame * frame

)

Return decoded output data from a decoder.

Parameters

avctx codec context

frame This will be set to a reference-counted video or audio frame (depending on the decoder

type) allocated by the decoder. Note that the function will always call

av_frame_unref(frame) before doing anything else.

Returns

0: success, a frame was returned AVERROR(EAGAIN): output is not available in this state - user

must try to send new input AVERROR_EOF: the decoder has been fully flushed, and there will be

no more output frames AVERROR(EINVAL): codec not opened, or it is an encoder other negative

values: legitimate decoding errors

8.2.2 Encoding

AVCodec* avcodec_find_encoder_by_name (const char * name)

Find a registered encoder with the specified name.

https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavc__decoding.html#ga11e6542c4e66d3028668788a1a74217c
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/ffmpeg__filter_8c.html#a61569f2965b7a369eb10b6d75d410d11
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/structAVFrame.html
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/structAVCodec.html

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 41 of 55

Parameters

name name of the requested encoder

Returns

An encoder if one was found, NULL otherwise.

int avcodec_send_frame (AVCodecContext * avctx,

 const AVFrame * frame

)

Supply a raw video or audio frame to the encoder.

Use avcodec_receive_packet() to retrieve buffered output packets.

Parameters

avctx codec context

[in] frame AVFrame containing the raw audio or video frame to be encoded. Ownership of the

frame remains with the caller, and the encoder will not write to the frame. The

encoder may create a reference to the frame data (or copy it if the frame is not

reference-counted). It can be NULL, in which case it is considered a flush packet. This

signals the end of the stream. If the encoder still has packets buffered, it will return

them after this call. Once flushing mode has been entered, additional flush packets

are ignored, and sending frames will return AVERROR_EOF.

For audio: If AV_CODEC_CAP_VARIABLE_FRAME_SIZE is set, then each frame can have any number of

samples. If it is not set, frame->nb_samples must be equal to avctx->frame_size for all frames except the

last. The final frame may be smaller than avctx->frame_size.

Returns

0 on success, otherwise negative error code: AVERROR(EAGAIN): input is not accepted in the

current state - user must read output with avcodec_receive_packet() (once all output is read,

the packet should be resent, and the call will not fail with EAGAIN). AVERROR_EOF: the encoder

has been flushed, and no new frames can be sent to it AVERROR(EINVAL): codec not opened,

refcounted_frames not set, it is a decoder, or requires flush AVERROR(ENOMEM): failed to add

packet to internal queue, or similar other errors: legitimate decoding errors

int avcodec_receive_packet (AVCodecContext * avctx,

https://ffmpeg.org/doxygen/4.1/ffmpeg__filter_8c.html#a61569f2965b7a369eb10b6d75d410d11
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html
https://ffmpeg.org/doxygen/4.1/structAVFrame.html
https://ffmpeg.org/doxygen/4.1/group__lavc__decoding.html#ga5b8eff59cf259747cf0b31563e38ded6
https://ffmpeg.org/doxygen/4.1/structAVFrame.html
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavc__decoding.html#ga5b8eff59cf259747cf0b31563e38ded6
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/ffmpeg__filter_8c.html#a61569f2965b7a369eb10b6d75d410d11
https://ffmpeg.org/doxygen/4.1/structAVCodecContext.html

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 42 of 55

 AVPacket * avpkt

)

Read encoded data from the encoder.

Parameters

avctx codec context

avpkt This will be set to a reference-counted packet allocated by the encoder. Note that the

function will always call av_frame_unref(frame) before doing anything else.

Returns

0 on success, otherwise negative error code: AVERROR(EAGAIN): output is not available in the

current state - user must try to send input AVERROR_EOF: the encoder has been fully flushed,

and there will be no more output packets AVERROR(EINVAL): codec not opened, or it is an

encoder other errors: legitimate decoding errors

https://ffmpeg.org/doxygen/4.1/structAVPacket.html
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca
https://ffmpeg.org/doxygen/4.1/group__lavu__error.html#gae4bb6f165973d09584e0ec0f335f69ca

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 43 of 55

9 Resource Management

A resource management mechanism is in place on the NETINT server for the management of video
transcoding resources. It provides functionality for query/allocation of transcoding resources to its users,
in the form of utility programs, and a C language library and API that are ready to integrate with third
party application software packages such as FFmpeg.

9.1 Transcoding Resources

The transcoding resources on a host are hardware transcoder cards and decoder/encoder chips inside
those cards. Each decoder/encoder has a certain processing capacity that can handle a limited number of
video streams based on resolution and frame rate. The resource management’s tasks are to present
inventory and status on available resources and enable resource distribution. User applications can build
their own resource management schemes on top of this resource pool or leave this task to the NETINT
server for some default simplified resource distribution scheme.

9.2 Device Load and Software Transcoding Instance

At system run time, device firmware maintains a value for each hardware codec representing the
processing load currently on the codec. This number is obtained by accumulating clock cycles spent
decoding and encoding streams and dividing it by the maximum number of cycles available during a
period of time. This reflects how heavy the codec is being used for the stream processing.

For each stream being decoded or encoded, a software decoding or encoding instance is created on the
hardware codec. The number of active software transcoding instances on a hardware instance is another
measure of load on transcoding resources.

The firmware also tracks the model load for each card. The model load is calculated by width*height*FPS.
The model load will be increased from the firmware side once an instance is created successfully, either
for encoder or decoder. When an instance is closed successfully the model load will be deducted as well.

9.3 Resource Distribution Strategy

Users may query real time load numbers as described above and devise resource distribution schemes.
Some possible strategies are:

• Use the least model loaded codec meeting the capacity requirement for a stream transcoding to
maximize the performance (with the smallest delay, such as in the real time streaming
applications). In this scheme, it’s best for the total processing NOT to exceed the maximum
capacity of a codec model load which is 100. This is the default NETINT server behavior.

• Use a pool of reserved codecs for certain types of tasks (offline transcoding for example), by
collocating the processing of multiple streams on the same codec as much as possible to
maximize the resource usage, without regard for the processing performance.

NOTE: In both examples, the resource management will not reject requests for transcoding resource
allocation, even if the request would eventually result in exceeding the maximum processing capacity of

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 44 of 55

the codec. This allows users to cram high-latency tolerant tasks such as off-line transcoding on a single
codec. However, such requests could be rejected by the codec firmware at run-time due to the limit of
resources such as memory restraint.

The Resource Management has been integrated into FFmpeg. When running FFmpeg, command line
options can be used to exercise the API functions as follows.

The -xcoder [strategy] argument specifies which resource allocation strategy shall be used for decoding or
encoding. The -enc [device] and -dec [device] arguments can be used to assign the encoding or decoding
task to a specific codec device respectively. See FFmpeg command line option help text for NETINT codecs
for details.

Examples.

Allow the least model loaded decoder to be used for decoding (default).

$ ffmpeg -c:v h264_ni_dec -i input.264 output.yuv

Allow the encoder with the least number of running encoding instance to be used for encoding.

$ ffmpeg -i input.yuv -c:v h265_ni_enc -xcoder bestinst output.265

Allow the least loaded encoder that can handle the encoding task in real time to be used for encoding.

$ ffmpeg -i input.yuv -c:v h265_ni_enc -xcoder bestload output.265

Use decoder of index 0 and encoder of index 1 for decoding and encoding respectively.

$ ffmpeg -c:v h264_ni_dec -dec 0 -i input.264 -c:v h265_ni_enc -enc 1 output.265

9.4 NETINT Command-Line Interface (CLI)

A few utility programs are provided to list and monitor resource usage. Running the utility
/usr/local/bin/ni_rsrc_list produces similar results as that of running FFmpeg with the

resource listing option. Another utility is /usr/local/bin/ni_rsrc_mon, that actively monitors the

resource usage on the server and initializes resources. A sample output is shown below:

**

1 devices retrieved from current pool at start up

Sat Apr 18 14:19:58 2020 up 00:00:00 v162R2N02

Num decoders: 1

BEST INDEX LOAD MODEL_LOAD INST DEVICE NAMESPACE

L 0 0 16 0 /dev/nvme0 /dev/nvme0n1

Num encoders: 1

BEST INDEX LOAD MODEL_LOAD INST DEVICE NAMESPACE

L 0 0 0 0 /dev/nvme0 /dev/nvme0n1

**

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 45 of 55

10 Resource Management API

At each reboot of NETINT server, the hardware devices are scanned and the information for available
transcoding resources is collected and saved in a resource pool. This pool is subsequently queried and
managed by applications through the Resource Management API. The Resource Management API is
provided in the form of a C language API with a header file of C function declarations and structures used
for passing information, as well as a C library to be linked with user applications. In addition, utility
programs are provided to demonstrate the main functionality and how to integrate with third-party
software.

10.1 Device Contexts

When accessing resource pools for query and management, exclusive access is necessary to maintain the
resource pool integrity. To provide maximum flexibility and efficiency, a coder context is provided to be
used for operations on the codec’s information storage.

NOTE All operations in the API, with or without explicit coder context usage, may block the caller,
indicating that another user is currently accessing the resource pool for either a particular codec, or the
whole resource pool for allocation.

10.1.1 The Device Context Structure

The coder context structure defined below is used in the API for accessing the stored information of a
decoder/encoder, which is explained in the following sections.

The typedef struct ni_device_context_t is as follows:

 char shm_name[NI_MAX_DEVICE_NAME_LEN];
 ni_lock_handle_t lock;

 ni_device_info_t * p_device_info;

NOTE: This structure is not supposed to be read/written by the caller directly, only be passed in the
subsequent calls to API.

The coder context shall be obtained before any operations, including updates and queries, execute on the
codec. This is done by providing the coder’s type and GUID, a globally unique ID among the same type of
coders: decoder or encoder. Based on this information, the coder context is retrieved. The device context
should be freed after use.

/*!*

* Get the device context. To be used for load update and codec query.

*

* ¥param[in] type Decoder or encoder

* ¥param[in] guid unique coder(decoder or encoder) id

*

* ¥return pointer to ni_device_context_t if found, NULL otherwise

* Note: the returned ni_device_context_t content is not supposed to be used by

* caller directly: should only be passed to API in the subsequent

* calls; also after its use, the context should be released by

* calling ni_rsrc_free_device_context.

*/

LIB_API ni_device_context_t * ni_rsrc_get_device_context(ni_device_type_t type,

int guid);

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 46 of 55

/*!*

* Free the device context returned by ni_rsrc_get_device_context after use.

*

* ¥param[in] p_ctxt The device context returned by ni_rsrc_get_device_context

*

*/

LIB_API void ni_rsrc_free_device_context(ni_device_context_t *p_ctxt);

10.1.2 Retrieve/Free Device Context

The retrieve/free device context sample is as follows:

ni_device_info_t *ni_rsrc_get_device_info(ni_device_type_t device_type, int guid)

{

 ni_device_info_t *p_device_info = NULL;

 ni_device_context_t* p_device_context = NULL;

 p_device_context = ni_rsrc_get_device_context(device_type, guid);

 if (NULL == p_device_context)

 {

 LRETURN;

 }

 p_device_info = malloc(sizeof(ni_device_info_t));

 if (NULL == p_device_info)

 {

 LRETURN;

 }

#ifdef _WIN32

 if (WAIT_ABANDONED == WaitForSingleObject(p_device_context->lock, INFINITE)) // no

time-out interval) //we got the mutex

 {

 printf("ERROR: ni_rsrc_get_device_info() failed to obtain mutex: %p¥n",

p_device_context->lock);

 free(p_device_info);

 LRETURN;

 }

 memcpy(p_device_info, p_device_context->p_device_info, sizeof(ni_device_info_t));

 ReleaseMutex(p_device_context->lock);

#elif __linux

 lockf(p_device_context->lock, F_LOCK, 0);

 memcpy(p_device_info, p_device_context->p_device_info, sizeof(ni_device_info_t));

 lockf(p_device_context->lock, F_ULOCK, 0);

#endif

 END;

 ni_rsrc_free_device_context(p_device_context);

 return p_device_info;

}

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 47 of 55

10.2 Device Information

10.2.1 The DeviceCapability Structure

The Resource Manager maintains a data structure that records coder information for each decoder and
encoder.

typedef struct _ni_device_video_capability

{

 int max_res_width; /*! max resolution */

 int max_res_height;

 int min_res_width; /*! min resolution */

 int min_res_height;

 char profiles_supported[NI_MAX_PROFILE_NAME_LEN];

 char level[NI_MAX_LEVEL_NAME_LEN];

 char additional_info[NI_MAX_ADDITIONAL_INFO_LEN];

} ni_device_video_capability_t;

typedef struct _ni_sw_instance_info

{

 int id;

 ni_sw_instance_status_t status;

 ni_codec_t codec;

 int width;

 int height;

 int fps;

} ni_sw_instance_info_t;

typedef struct _ni_device_info

{

 char dev_name[NI_MAX_DEVICE_NAME_LEN];

 char blk_name[NI_MAX_DEVICE_NAME_LEN];

 int hw_id;

 int module_id; /*! global unique id, assigned at creation

*/

 int load; /*! p_load value retrieved from f/w */

 int model_load; /*! p_load value modelled internally */

 unsigned long xcode_load_pixel; /*! xcode p_load in pixels: encoder

only */

 int fw_ver_compat_warning;

 uint8_t fw_rev[8]; // fw revision

 uint8_t fw_commit_hash[41];

 uint8_t fw_commit_time[26];

 uint8_t fw_branch_name[256];

 /*! general capability attributes */

 int max_fps_1080p; /*! max fps for 1080p (1920x1080) */

 int max_instance_cnt; /*! max number of instances */

 int active_num_inst; /*! active numver of instances */

 ni_device_type_t device_type; /*! decoder or encoder */

 /*! decoder/encoder capabilities */

 int supports_h264; /*! supports "type" (enc/dec) of H.264

*/

 ni_device_video_capability_t h264_cap;

 int supports_h265; /*! supports "type" (enc/dec) of H.265

*/

 ni_device_video_capability_t h265_cap;

 ni_sw_instance_info_t sw_instance[NI_MAX_SW_INSTANCE_COUNT];

} ni_device_info_t;

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 48 of 55

10.2.2 Device capability output

Output of ni_rsrc_list program has the following output showing the transcoder card’s capability:

Num decoders: 1

Decoder #0

 DeviceID: /dev/nvme0

 BlockID: /dev/nvme0n1

 H/W ID: 0

 F/W rev: 200R1A00

 F/W & S/W compatibility: yes

 F/W branch: T408_XCODER_FW_RELEASE_2.0.0

 F/W commit hash: c5f1a7acf411e0bb1da73bc9d87fb698c3b3adc1

 F/W commit time: 2020-04-06 16:04:53 -0700

 MaxNumInstances: 32

 ActiveNumInstances: 0

 Max1080pFps: 240

 CurrentLoad: 0

 H.264Capabilities:

 Supported: yes

 MaxResolution: 8192x5120

 MinResolution: 32x32

 Profiles: Baseline, Constrained Baseline, Main, High, High10

 level: Level 6.2

 additional info:

 H.265Capabilities:

 Supported: yes

 MaxResolution: 8192x5120

 MinResolution: 32x32

 Profiles: Main, Main10

 level: Level 6.2 Main-Tier

 additional info:

 num. s/w instances: 0

Num encoders: 1

Encoder #0

 DeviceID: /dev/nvme0

 BlockID: /dev/nvme0n1

 H/W ID: 1

 F/W rev: 200R1A00

 F/W & S/W compatibility: yes

 F/W branch: T408_XCODER_FW_RELEASE_2.0.0

 F/W commit hash: c5f1a7acf411e0bb1da73bc9d87fb698c3b3adc1

 F/W commit time: 2020-04-06 16:04:53 -0700

 MaxNumInstances: 32

 ActiveNumInstances: 0

 Max1080pFps: 240

 CurrentLoad: 0

 H.264Capabilities:

 Supported: yes

 MaxResolution: 8192x5120

 MinResolution: 32x32

 Profiles: Baseline, Extended, Main, High, High10

 level: Level 6.2

 additional info:

 H.265Capabilities:

 Supported: yes

 MaxResolution: 8192x5120

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 49 of 55

 MinResolution: 32x32

 Profiles: Main, Main10

 level: Level 6.2 Main-Tier

 additional info:

 num. s/w instances: 0

10.2.3 List All Devices

This API function retrieves information of all the decoders and encoders of the system from the coder info
storage.

/*!*

* List all the devices (encoder and decoder) with their full info including

* s/w instances on the system.

*

* ¥param[out] p_device The device' info returned.

*

* ¥return 0 on success, < 0 failure

* Note: caller is responsible for allocating enough memory for "p_device".

*/

LIB_API int ni_rsrc_list_all_devices(ni_device_t *p_device);

10.2.4 List Information for Selected Devices

Another function can be used to retrieve detailed information of all the decoders or encoders of the
system.

/*!*

* List device(s) of a certain type (encoder/decoder) with their full info

* including s/w instances on the system.

*

* ¥param[in] type Decoder or encoder

* ¥param[out] p_device The p_device' info returned.

* ¥param[out] p_device_count The number of ni_device_info_t returned.

* ¥return 0 on success, < 0 failure

* Note: caller is responsible for allocating enough memory for "p_device".

*/

LIB_API ni_retcode_t ni_rsrc_list_devices(ni_device_type_t device_type,

 ni_device_info_t *p_device_info, int *p_device_count);

10.2.5 Retrieve Detailed Information for a Particular Device

Another one can be used for one coder’s detailed info query.

/*!*

* Query a specific device with detailed info on the system.

*

* ¥param[in] type Decoder or encoder

* ¥param[in] guid unique device(decoder or encoder) id

*

* ¥return pointer to ni_device_info_t if found, NULL otherwise

* Note: caller is responsible for releasing the memory allocated for

* coder info.

*/

LIB_API ni_device_info_t* ni_rsrc_get_device_info(ni_device_type_t device_type,

int guid);

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 50 of 55

10.2.6 Update Device Information

After obtaining the device context, the device coder’s load value can be updated by passing in the context
object and latest load values. This is usually done by the resource management programs.

/*!*

* Update the load value and s/w instances info of a specific decoder or

* encoder. This is used by resource management daemon to update periodically.

*

* ¥param[in] p_ctxt The coder context returned by ni_rsrc_get_device_context

* ¥param[in] p_load The latest p_load value to update

* ¥param[in] nb_sw_insts Number of s/w instances

* ¥param[in] sw_insts Info of s/w instances

*

* ¥return 0 on success, < 0 failure

*/

LIB_API int ni_rsrc_update_device_load(ni_device_context_t *p_ctxt, int load,

 int nb_sw_insts, const ni_sw_instance_info_t sw_insts[]);

10.3 Resource Allocation

The distribution of encoding/decoding processing resource is across all the transcoder cards on the same
host, i.e. a stream's decoding and encoding are not restricted to co-locating on the same chip. Two types
of resource allocation approaches are available: user directed allocation, auto-allocation.

10.3.1 User-Directed Resource Allocation

In user directed resource allocation, users devise their own resource allocation scheme based on the
resource pool information provided by the resource manager API and utility programs. Typical scenario
involves user querying and getting detailed information of the resource pool, and based on the obtained
information, explicitly specifying which decoder/encoder to use in the transcoding. This procedure allows
finer and total control of resource allocation by users. However, users must take care not to create any
race conditions with multiple applications accessing the resource info that may inadvertently put too
much load on a single codec, since there is always time gap between query and allocation operations. The
following API is used for this use case.

/*!*

* Allocate resources for decoding/encoding, by designating explicitly

* the device to use.

*

* ¥param[in] type Decoder or encoder

* ¥param[in] guid unique coder(decoder or encoder) module id

* ¥param[in] codec EN_H264 or EN_H265

* ¥param[in] width width of video resolution

* ¥param[in] height height of video resolution

* ¥param[in] frame_rate video stream frame rate

* ¥param[out] p_load the p_load that will be generated by this encoding

* task. Returned *only* for encoder for now.

*

* ¥return pointer to ni_device_context_t if found, NULL otherwise

* Note: codec, width, height, fps need to be supplied by encoder; they

* are ignored for decoder.

* Note: the returned ni_device_context_t content is not supposed to be used by

* caller directly: should only be passed to API in the subsequent

* calls; also after its use, the context should be released by

* calling ni_rsrc_free_device_context.

*/

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 51 of 55

LIB_API ni_device_context_t* ni_rsrc_allocate_direct(ni_device_type_t type, int

guid,

 ni_codec_t codec,

 int width, int height, int frame_rate,

 unsigned long *p_load);

10.3.2 Auto Resource Allocation

This allocation procedure leaves the query and allocation task to the NETINT resource management, and it
is done automatically so that the race condition mentioned above can be eliminated. Two auto-allocation
rules can be specified by user: least-load (the codec that has the least load value available shall be picked),
least-instances (the codec that has the least number of transcoding software instances shall be picked).
When not specified, the default rule is least-load.

/*!*

* Allocate resources for decoding/encoding, based on the provided rule

*

* ¥param[in] type Decoder or encoder

* ¥param[in] rule allocation rule

* ¥param[in] codec EN_H264 or EN_H265

* ¥param[in] width width of video resolution

* ¥param[in] height height of video resolution

* ¥param[in] frame_rate video stream frame rate

* ¥param[out] p_load the p_load that will be generated by this encoding

* task. Returned *only* for encoder for now.

*

* ¥return pointer to ni_device_context_t if found, NULL otherwise

* Note: codec, width, height, fps need to be supplied by encoder; they

* are ignored for decoder.

* Note: the returned ni_device_context_t content is not supposed to be used by

* caller directly: should only be passed to API in the subsequent

* calls; also after its use, the context should be released by

* calling ni_rsrc_free_device_context.

*/

LIB_API ni_device_context_t* ni_rsrc_allocate_auto(ni_device_type_t type,

 ni_alloc_rule_t rule,

 ni_codec_t codec,

 int width, int height, int frame_rate,

 unsigned long *p_load);

10.3.3 Sample usage

The following is a simple example of allocating decoding resources on a specific codec (decoder GUID 10)
for decoding a stream of resolution 1080p (1920x1080) at frame rate of 30.

ni_device_context_t *p_ctxt = NULL;

unsigned long model_load;

p_ctxt = ni_rsrc_allocate_auto (NI_DEVICE_TYPE_DECODER, 10, EN_H264, 1920, 1080,

30, &model_load);

if (p_ctxt) {

 /* codec operations here … */

 ni_rsrc_free_device_context (p_ctxt);

}

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 52 of 55

Here is another example of querying all the codec information on the host.

 int i;

 ni_device_t devices = {0};

 if (ni_rsrc_list_all_devices (&devices) == 0) {

 /* print out devices in the order based on their guid */

 printf("Num decoders: %d¥n", devices.decoders_cnt);

 for (i = 0; i < devices.decoders_cnt; i++) {

 ni_rsrc_print_device_info (&(devices.decoders[i]));

 }

 printf("Num encoders: %d¥n", devices.encoders_cnt);

 for (i = 0; i < devices.encoders_cnt; i++) {

 ni_rsrc_print_device_info (&(devices.encoders[i]));

 }

 }

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 53 of 55

11 Debugging

11.1 NETINT Codec Library Debug Log

The NETINT Codec Library (including libxcoder) provides full logging of event sequences and information,
as well as the log timestamp in run time for troubleshooting and debugging purposes.

When using NETINT Codec Library, the logging is implemented such that libxcoder will use the same
logging level as what is specified by FFmpeg’s command line option “-loglevel”. Reference FFmpeg manual
page for details.

If your application imports libxcoder directly, the logging level may be set by importing ni_utils.h and
calling the ni_log_set_level() function. Please refer to the below code excerpt from ni_util.h for
enumerations and functions relevant to libxcoder logging.

typedef enum

{

 NI_LOG_NONE = 0,

 NI_LOG_FATAL = 1,

 NI_LOG_ERROR = 2,

 NI_LOG_INFO = 3,

 NI_LOG_DEBUG = 4,

 NI_LOG_TRACE = 5

} ni_log_level_t;

void ni_log_set_level(ni_log_level_t level);

ni_log_level_t ni_log_get_level(void);

ni_log_level_t ff_to_ni_log_level(int fflog_level);

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 54 of 55

12 List of Application Notes

A number of Application Notes have been written to explain details of a certain feature in NETINT
transcoding:

• APPS001 NETINT Encoder quality

• APPS002 Operation Troubleshooting

• APPS003 NUMA IO performance optimization

• APPS004 Crash Auto Recovery

• APPS006 Frame Type Forcing

• APPS007 QP Forcing

• APPS008 Encode reconfiguring

• APPS009 Region of Interest

• APPS010 Sequence Change

• APPS012 Low latency mode

• APPS014 NVME IO size

• APPS015 BD-RATE calculation

• APPS016 HLG –VUI Parameters

• APPS017 libxcoder API examples

• APPS018 Crash Recovery

• APPS019 Bitrate reconfiguration

• APPS020 User data unregistered SEI passthrough

• APPS021 HTTP live streaming

• APPS022 Android setup

• APPS023 Crash Recovery (Windows VM) Application Note

• APPS025 SR-IOV Configuration and Usage Guide

• APPS026 Multi-NameSpaces Application Note

• APPS027 H.265 Encoder Algorithm Tuning Application Note

• APPS028 Long Term Reference Frame Application Note

Codensity T408/T432 Integration & Programming Guide

NETINT © 2022 Page 55 of 55

• APPS029 Rate control (RC) related parameters dynamic change Application Note

• APPS030 Intra parameters reconfig Application Note

• APPS031 VUI reconfig Application Note

• APPS032 Latency Reporting Application Note

• APPS033 Custom SEI passthrough Application Note

• APPS034 Nvidia GPUDirectForVideo Application Note

• APPS035 NVMe-oF RDMA and TCP Measurements

• APPS036 Kubernetes Configuration Application Note

• APPS039 Host Memory and User Process Optimization

• APPS040 Docker Interworking

• APPS041 SMBus App Note

• APPS042 Encoder Latency Measurement Procedure App Note

• APPS043 Vendor get-log Power Measurement App Note

• APPS044 Temperature Sensor Thresholds App Note

